skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Engel-Herbert, Roman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the growth of InSe films on semi-insulating GaAs(111)B substrates by molecular beam epitaxy (MBE). Excellent nucleation behavior resulted in the growth of smooth, single-phase InSe films. The dominant polytype was the targeted γ-InSe. Transmission electron microscopy revealed the presence of three bulk polytypes β, γ, and ε-InSe arranged in nanosized domains, which can be interpreted as sequences of stacking faults and rotational twin boundaries of γ-InSe. Additionally, a centrosymmetric Se-In-In-Se layer polymorph with$$P\bar{3}m$$ P 3 ̅ m symmetry was identified as typically not present in bulk. Sizeable differences in their electronic properties were found, which resulted in sizeable electronic disorder arising from the nanoscale polytype arrangement that dominated the electronic transport properties. While MBE is a viable synthesis route towards stabilization of InSe polytypes not present in the bulk, an improved understanding to form the targeted polymorph is required to ultimately inscribe a layer sequence on demand utilizing bottom-up synthesis approaches. 
    more » « less
  2. Abstract Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO3. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition. Further, the high sample purity enabled accessing the high magnetic field transport regime at low temperature, which revealed an anomalously high Hall coefficient. Taken with the strong anisotropic scattering, this presents a more complex picture of SrVO3that deviates from a simple Landau Fermi liquid. These hidden transport anomalies observed in the ultraclean limit prompt a theoretical reexamination of this canonical correlated electron system beyond the Landau Fermi liquid paradigm, and more generally serves as an experimental basis to refine theoretical methods to capture such nontrivial experimental consequences emerging in correlated electron systems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Large-scale and air-stable two-dimensional metal layers intercalated at the interface between epitaxial graphene and SiC offer an appealing material for quantum technology. The atomic and electronic details, as well as the control of the intercalated metals within the interface, however, remain very limited. In this Letter, we explored ultrathin indium confined between graphene and SiC using cryogenic scanning tunneling microscopy, complemented by first-principle density functional theory. Bias-dependent imaging and tunneling spectroscopy visualize a triangular superstructure with a periodicity of 14.7 ± 3 Å and an occupied state at about −1.6 eV, indicating proof of highly crystalline indium. The scanning tunneling microscopy tip was used to manipulate the number of indium layers below graphene, allowing to identify three monatomic In layers and to tune their corresponding electronic properties with atomic precision. This further allows us to attribute the observed triangular superstructure to be solely emerging from the In trilayer, tentatively explained by the lattice mismatch induced by lattice relaxation in the topmost In layer. Our findings provide a microscopic insight into the structure and electronic properties of intercalated metals within the graphene/SiC interface and a unique possibility to manipulate them with atomic precision using the scanning probe technique. 
    more » « less
  4. Free, publicly-accessible full text available January 1, 2026
  5. Abstract Although metal–organic (MO) precursors are widely used in technologically relevant deposition techniques, reports on their temperature-dependent evaporation and decomposition behaviors are scarce. Here, MO precursors of the metals Ti, V, Al, Hf, Zr, Ge, Ta, and Pt were subjected to thermogravimetric analysis to experimentally determine their vapor pressure curves and to gain insight into their temperature-dependent decomposition kinetics. Benzoic acid was used as a calibration standard and vapor pressure curves were extracted from thermogravimetric measurements using the Langmuir equation. The obtained data is used to discuss the suitability of these MO precursors in chemical vapor deposition-based thin film growth approaches in general, and hybrid molecular beam epitaxy in particular. All MOs, except for Ta- and one Ti-based MOs, were deemed suitable for gas inlet systems. The Ta-based MO demonstrated suitability for an effusion cell, while all MOs showed compatibility with cracker usage. Graphical Abstract 
    more » « less
  6. Among ABO3 perovskites, SrMoO3 possesses the lowest electrical resistivity in addition to having high optical transparency in the visible spectrum. This unusual combination of material properties allows it to be a potential replacement for indium tin oxide as a transparent electrode. Thus far, its thin film synthesis has been challenging and limited primarily to pulsed laser deposition and sputtering. Here, we report the growth of SrMoO3 thin films by suboxide molecular beam epitaxy. We demonstrate that optically transparent and conductive SrMoO3 films can be grown by supplying elemental strontium via a conventional effusion cell and thermally evaporating MoO3 pellets as a molybdenum source. The direct supply of a molecular oxygen flux to the MoO3 charge was utilized to prevent reduction to lower oxidation states of the charge to ensure congruent evaporation and, thus, a stable MoO3 molecular flux. The optimal growth conditions were found by varying the Sr to MoO3 flux ratio determined from quartz crystal microbalance measurements and monitoring the growth by reflection high-energy electron diffraction. SrMoO3 thin films with 21 nm thickness were confirmed to be optically transparent with transmission between 75 and 91% throughout the visible spectral range and electrically conducting with a room temperature resistivity of 5.0 × 10−5 Ω cm. This realization of this thin film growth method can be further expanded to the growth of other transition metal perovskites in which cations have extremely low vapor pressure and cannot be evaporated in elemental forms. 
    more » « less